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1. Prove that
(2024

1000

)
is odd.

Proof. We have
(2024

1000

)= (2024
1024

)
. More generally we can prove that if 2n ≤ m ≤ 2n+1 −1,

then
(m

2n

)
is odd. This is an easy application of Lucas’ Theorem on binomial coeffi-

cients modulo a prime, but we can give a direct elementary proof.

Let m = 2n + r where 0 ≤ r ≤ 2n −1. We have
(m

2n

) = (r+2n )(r+2n−1)···(r+1)
(2n )! . Denote this

expression by f (r ). We have f (0) = 1 and f (r +1) = r+2n+1
r+1 f (r ).

Claim: If r < 2n , then r+2n

r = a
b for some odd integers a and b.

Assuming the claim, our desired statement follows by induction: f (r +1)b = f (r )a
with a,b odd implies that f (r ) and f (r +1) have the same parity.

For the claim, write r = 2k s where s is odd. We have k < n since r < 2n . Then r+2n

r =
s+2n−k

s . Clearly s and s +2n−k are odd.

2. Let f : [0,2π] → R be a continuous function which is differentiable on (0,2π). Show
that there exists some ξ ∈ (0,2π) such that (cosξ, sinξ) is orthogonal to ( f (ξ), f ′(ξ)−
2024).

Proof. We need to find ξ ∈ (0,2π) such that

f (ξ)cosξ+ ( f ′(ξ)−2024)sinξ= f (ξ)cosξ+ f ′(ξ)sinξ−2024sinξ= F ′(ξ) = 0.

where
F (x) = f (x)sin x +2024cos x.

Note that
F (0) = 2024 = F (2π).

So, by Rolle’s Theorem there exists ξ such that F ′(ξ) = 0.
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3. Determine which of the numbers 5050 and 4951 is larger (if any).

Proof. 4951 is the largest number. First note that

4951

5050
= 49

(
49

50

)50

= 49

(
1− 1

50

)50

= 49

((
1− 1

50

)25)2

Recall Bernoulli’s inequality:

(1+x)n ≥ 1+nx for x >−1,n ∈N.

Hence, (
1− 1

50

)25

≥ 1− 25

50
= 1

2
.

Therefore,
4951

5050
≥ 49

4
> 12.

4. Let A,B be 2 × 2 matrices with real entries. Prove that there exist real numbers
a,b,c,d ,e at least one of which is nonzero such that

A(aB +bI2)+B(c A+d I2) = eI2

where I2 =
(
1 0
0 1

)
Proof. The set of 2 × 2 matrices with real entries is a 4-dimensional vector space
with basis given by the 4 matrices that have 1 in some corner and 0 elsewhere. Then
the 5 matrices AB , A,B A,B , I2 must be linearly dependent. The conclusion can be
expressed as a AB +b A+ cB A+dB −eI2 = 02

5. Find the limit

lim
n→∞

∫ 2n

n

x2 −2x log x −1

x(x −1)2
dx.

Proof. We set

An =
∫ 2n

n

x2 −1

x(x −1)2
dx

and

Bn = 2
∫ 2n

n

log x

(x −1)2
dx.
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First, using partial fractions

An =
∫ 2n

n

(
2

x −1
− 1

x

)
dx = 2log

(
2n −1

n −1

)
− log

2n

n
= 2log

(
2n −1

n −1

)
− log2.

Thus
lim

n→∞ An = 2log2− log2 = log2.

For Bn :

0 ≤ Bn ≤ 2log(2n)
∫ 2n

n

1

(x −1)2
dx = 2log(2n)

(
1

n −1
− 1

2n −1

)
= 2

log2n

n −1

n

2n −1
.

It is easy to check using L’Hospital’s rule that

lim
n→∞

log2n

n −1

n

2n −1
= 0.

Hence, an application of the sqeeuze theorem for sequences gives us that Bn → 0.
Thus,

lim
n→∞

∫ 2n

n

x2 −2x log x −1

x(x −1)2
dx = log2.

6. Let p(x) = x3+a2x2+a1x+a0 with a0, a1, a2 integers. Prove that if p(2023), p(2024),
p(2025) are multiples of 3, then a0 and a2 are multiples of 3.

Proof. Since 2025 is a multiple of 3, we deduce that a0 = p(2025)−2025(2025a2+a1)
is also a multiple of 3. Let

q(x) = x2 +a2x +a1.

Since 2023 and 2024 are not multiples of 3, it follows from p(x)− a0 = x · q(x) that
q(2023) and q(2024) are multiples of 3. Then q(2024)−q(2023) = 4047+a2 is divisible
by 3. Since 3 | 4047, we obtain the conclusion.

7. Evaluate ∫ 1

0

dxp
x + 3

p
x

.

Proof. We will use the change of variables x = y6. Therefore (using also partial frac-
tion decomposition)∫

dxp
x + 3

p
x

x=y6

=
∫

6y5

y3 + y2
dy =

∫
6y3

y +1
dy = 6

∫ (
y2 − y − 1

y +1
+1

)
dy.
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Therefore,∫ 1

0

dxp
x + 3

p
x
= 6

(
y3

3
− y2

2
− log(y +1)+ y

)∣∣∣1

0

= (
2
p

x −3 3
p

x −6log( 6
p

x +1)+6 6
p

x
)∣∣∣1

0
= 5−6log2.

8. Consider a linear system of equations{
ax +by = c

d x +e y = f

where a,b,c,d ,e, f are rational numbers and x, y are unknowns. Prove that if the
system has a real solution (x, y), then it also has a solution where x, y are rational.

Proof. If a = b = d = e = 0 then the system having a real solution also forces c = f = 0,
thus any pair of rational numbers (x, y) is a solution.

Assume that a,b,d ,e are not all 0. Up to swapping the equations, and swapping x, y
we may assume that a ̸= 0. The system is equivalent then to{

x + b
a y = c

a

(e − bd
a )y = f − bc

a

Either e − bd
a ̸= 0 and then y is uniquely determined and rational and so is x, or

e − bd
a = 0. In this case we must also have f = bc

a for the system to have solutions.
Any rational choice for y leads to a solution where x is also rational.

9. Let f :R→R be a function such that

f ( f (x)) =−x for all x ∈R.

Show that f is not continuous in R.

Proof. First note that f is one to one and onto. Indeed, if f (x) = f (y) then

−x = f ( f (x)) = f ( f (y)) =−y,

so x = y . Therefore f is one to one. Now let y ∈R. Then

f ( f (−y)) = y.

So f is onto.

Since f is a continuous bijection, f is either strictly increasing or strictly decreasing.
You can verify this easily using the Intermediate Value Theorem. However, in both
cases f ◦ f would be strictly increasing. But this is a contradiction because f ◦ f (x) =
−x is strictly decreasing.
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10. You have two standard chess knights of the same color. In how many distinct ways
can you place them in different squares on an empty standard numbered 8×8 chess
board so that they don’t attack each other? Recall that the knight moves two squares
in vertical or horizontal direction, and one square either way in the perpendicular
direction. Since the knights have the same color, two configurations that differ only
by swapping the knights should only be counted once. Since the board is numbered,
rotating a configuration of knights will produce a different configuration. You do not
need to simplify your final answer.

Proof. There are
(64

2

)= 2016 distinct configurations of two knights not sitting on the
same square. They may or may not attack each other. Let’s count how many configu-
rations do attack each other. For this first we pretend that the knights are of different
color, then count attacking configurations, and then divide by two. The number of
squares that a knight attacks is as follows:

• Any of the 4 corner squares: Only attacks two squares.

• Any of the 8 side squares adjacent to the corners: Only attacks 3 squares.

• The other 16 side squares attack 4 squares.

• Any of the 4 squares diagonally adjacent to corners: attack 4 squares.

• Any of the other 16 squares adjacent to a side square attacks 6 squares.

• Any of the other 16 “central” squares attacks 8 squares.

Altogether we get 4·2+8·3+16·4+4·4+16·6+16·8 = 4·2+8·3+20·4+16·6+16·8 = 336
“ordered” attacking configurations, so 168 unordered attacking configurations. The
final answer is 2016−168 = 1848.
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