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1. Show that sin x + tan x > 2x for all x ∈ (0,π/2).

Solution. Let f (x) = sin x + tan x −2x. Then

f ′(x) = cos x + 1

cos2 x
−2 = cos3 x −2cos2 x +1

cos2 x
= cos3 x −cos2 x +1−cos2 x

cos2 x

= cos3 x −cos2 x +1−cos2 x

cos2 x
= −cos2 x(1−cos x)+ (1−cos x)(1+cos x)

cos2 x

= (1−cos x)(1+cos x −cos2 x)

cos2 x
.

So, since cos x < 1 on (0,π/2), we have that f ′(x) > 0 on (0,π/2) and thus f is strictly
increasing in [0,π/2). Thus, f (x) > f (0) = 0 for all x ∈ (0,π/2).

2. Let n ∈N. Evaluate ∫ π/2

0

sinn x

cosn x + sinn x
dx.

Solution. Let

I =
∫ π/2

0

sinn x

cosn x + sinn x
dx.

After changing variables x 7→ x−π/2, and using the trig identities sin(π/2−x) = cos x
and cos(π/2−x) = sin x we get that

I =
∫ π/2

0

cosn x

cosn x + sinn x
dx.

So,

2I =
∫ π/2

0

cosn x + sinn x

cosn x + sinn x
dx =π/2,

and thus I =π/4.
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3. Let Rθ : R2 → R2 be given by Rθ(a,b) = (a cosθ − b sinθ, a sinθ + b cosθ). This is
the counterclockwise rotation by θ degrees around the origin (0,0). Let Mx(a,b) =
(a,−b) and My (a,b) = (−a,b) be the reflections across the x and y-axes respectively.
Let

T (a,b) = R45(Mx(R90(My (R45(a,b))))).

Define T 2(a,b) = T (T (a,b)) and similarly define T n(a,b) for all n. Compute

T 2023(a,b)

in terms of a,b.

Proof. Rotations and reflections are linear transformations from R2 to R2 hence so
is the composition T . Linear transformations are determined by their values on the
standard basis vectors (1,0) and (0,1). By following the composition of geometric
transformations, T (1,0) = (−1,0) and T (0,1) = (0,−1). The linear transformation
that verifies both is T (a,b) = (−a,−b), the reflection across the origin. Iterating this
an odd number of times gives T 2023 = T , hence T 2023(a,b) = T (a,b) = (−a,−b).

4. Let an =∑n
k=1

1
k .

(a) Show that the limit
γ := lim

n→∞
(
an − logn

)
exists in R.

(b) Find the limit
lim

n→∞ean+1 −ean .

Solution. The proof of (4a) is a direct application of the integral test. For (4b) we
argue as follows:

ean+1 −ean = ean+ 1
n+1 −ean

= ean
(
e

1
n+1 −1

)
= ean−logn+logn

(
e

1
n+1 −1

)
= ean−lognn

(
e

1
n+1 −1

)
.

(1)

Since,
n

(
e

1
n+1 −1

)
→ 1

and by (4a),
an − logn → γ,

we deduce that
lim

n→∞ean+1 −ean = eγ.
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5. Determine which of the digits 0,1,2,3,4,5,6,7,8 or 9 may occur as the last digit of nn

where n is a positive integer.

Solution. We prove that the possible last digits are 0,1,3,4,5,6,7,9. In particular 2
and 8 cannot occur.

Denote by L(N ) the last digit of N . Clearly L(N ) = L(N +10k) for every nonnegative
integer k and L(M N ) = L(L(M)L(N )) for every M , N .

If n is not divisible by 2 or by 5, then n4 −1 is divisible by 10 so L(n4) = 1. This is an
instance of Euler’s Theorem that here can be checked directly since the last possible
digit of n would be 1,3,7 or 9. Thus if n ends in 1,3,7,9, and n = 4k+r with 0 ≤ r ≤ 3,
then L(nn) = L(nr ). Note that if n is coprime to 10, then so are all its powers, thus if
L(n) ∈ {1,3,7,9}, then L(nn) ∈ {1,3,7,9}. Which of these are possible? We see that the
last digit of 11,33,77,99 is 1,7,3,9.

What if n is divisible by 2 or by 5? We have for instance L(1010) = 0, L(22) = 4, L(44) =
6, L(55) = 5, L(66) = 6, L(88) = L(164) = L(64) = 6. How about 2 and 8?

For L(nn) = 2 or 8 we would need n = 2m to be even and for nn = (nm)2 to be of form
5k +2 or 5k +3. But (nm)2 is a perfect square. The remainders modulo 5 of perfect
squares are 0,1,4. This leaves 2 and 3 out, so 2 or 8 are never the last digit of nn .

6. Prove that for all n ∈N,

arctan(n +1)−arctan(n) < 1

n2 +n
.

Solution. By the Fundamental Theorem of Calculus,

arctan(n +1)−arctan(n) =
∫ n+1

n

1

1+x2
dx

<
∫ n+1

n

1

x2
dx

=−1

x

∣∣n+1
n = 1

n
− 1

n +1
= 1

n(n +1)
.

7. Let f : R→ R be a differentiable function such that f (0) = 2023 and f (2023) = 0.
Show that there exist a,b ∈R, a ̸= b, such that f ′(a) f ′(b) = 1.

Proof. Let g (x) = f (x)− x. By Intermediate Value Theorem, there exists some c ∈
(0,2023) such that g (c) = 0. That is f (c) = c. We now apply Mean Value Theorem on
the intervals (0,c) and (c,2023) to obtain a,b such that

f ′(a) = f (c)− f (0)

c −0
= f (c)−2023

c
= c −2023

c
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and

f ′(b) = f (2023)− f (c)

2023− c
= −c

2023− c
.

Thus,

f ′(a) f ′(b) = c −2023

c

−c

2023− c
= 1.

8. Consider the matrices A =


2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and B =


2 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

. We play a game

starting from the matrix A. At every step, call the current matrix C and we either:

• Swap the row of C that contains the entry 2 with any neighboring (above or
below) row of C , or

• Swap the column of C that contains 2 with any neighboring (to the left or to the
right) column of C .

Prove that we can never reach the matrix B starting from the matrix A, regardless of
the number of steps used.

Solution. Let Cn be the matrix right before step n, so C1 = A. Since the admissi-
ble operations are (particular cases of) one row swap or one column swap, we have
detCn+1 =−detCn . Note that det A = 2 and detB =−2. Thus we would need an odd
number of swaps to reach B = Cn from A = C1. However we have the extra restric-
tion that we have to bring the entry 2 back to its starting position. Let’s imagine how
2 moves along the steps. At every step it moves up, down, to the right, or to the left
by one. Since it goes back to its starting point, there must be as many moves to the
right as there are to the left, and as many moves down as there are back up. Thus we
need an even number of steps.
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