
SOLUTIONS TO 2019 STUART SIDNEY CALCULUS COMPETITION

Tuesday 26 March, 2018, 6:30–8:00 p.m.

(1) Let f(x) be a function that is odd and differentiable on (−∞,+∞).
(a) Prove that its derivative f ′(x) is an even function.
(b) Is the converse statement true?

Solution. (a) Since f(x) is an odd function, f(x) = −f(−x). Taking derivative
of this equality on both sides with respect to x, we get

f ′(x) = −(f(−x))′ = −(−f ′(−x)) = f ′(−x).

Note that the second equality uses the chain rule.
(b) The converse statement is not true, as an odd function requires that f(0) =

0, yet only knowing f ′(x) is an even function will not give that information. For
example, f(x) = x+ 1 is not an odd function, yet f ′(x) = 1 is an even function.

(2) Recall the equality from geometric series:

1

1− x
= 1 + x+ x2 + x3 + · · · , for |x| < 1.

(a) Compute the limit of the power series

1 · 2 + (2 · 3)x+ (3 · 4)x2 + (4 · 5)x3 + (5 · 6)x4 + · · · |x| < 1.

as a rational function in x;
(b) Compute

1− 1 · 2
2

+
2 · 3
22
− 3 · 4

23
+

4 · 5
24
− · · ·

Solution. Starting with the given geometric series, we take the derivatives with
respect to x (this is okay as the infinite sum is absolutely convergent):

1

(1− x)2
= 1 + 2x+ 3x2 + 4x3 + · · ·

The right hand side is absolutely convergent again when |x| < 1 by the ratio test for
example. Taking the derivatives again, we get

2

(1− x)3
= 2 + (2 · 3)x+ (3 · 4)x2 + (4 · 5)x3 + · · ·

So the answer to (a) is
2

(1− x)3
.

(b) Evaluating the above equality at x = −1
2
, we get

2

(1 + 1
2
)3

= 1 · 2− 2 · 3
2

+
3 · 4
22
− 4 · 5

23
+ · · ·

Dividing both sides by −2 and add 1, one get

1− 1

(1 + 1
2
)3

= 1− 1 · 2
2

+
2 · 3
22
− 3 · 4

23
+

4 · 5
24
− · · ·

The answer to (b) is the left hand side above, namely 1− 23

33
=

19

27
.
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(3) Construct one polynomial f(x) with real coefficients and with all of the following
properties:
(a) f(x) is an even function, in other words f(x) = f(−x);
(b) f(2) = f(−2) = 0,
(c) f(x) > 0 when −2 < x < 2, and
(d) the maximum of f(x) is achieved at x = 1 and x = −1.

Justify your answer.

Solution. We start with a function g(x) that achieves maximum at x = ±1 and
minimal at x = 0; for this, one may take g(x) such that g′(x) has zero at x = ±1, 0,

e.g. g′(x) = x − x3. Integrating, we may take g(x) = x2

2
− x4

4
. To modify it so that

it satisfies conditions (b) and (c), we take

f(x) = g(x)− g(2) =
x2

2
− x4

4
+ 2.

(4) Consider the first quadrant quarter unit disk

QD =
{

(x, y) | x ≥ 0, y ≥ 0, x2 + y2 ≤ 1
}
.

Assuming uniform density, find the coordinates of the center of mass of QD. (Hint:
the equality sin 3x = 3 sin x− 4 sin3 x might be helpful.)

Solution. We compute the integral∫ 1

0

x
√

1− x2dx x=sin t
=

∫ π/2

0

sin t cos t(cos tdt)

=

∫ π/2

0

sin t− sin3 tdt

=

∫ π/2

0

1

4
(sin t+ sin 3t)dt

= −1

4
cos t

∣∣∣π/2
0
− 1

12
cos 3t

∣∣∣π/2
0

= −0 +
1

4
− 0 +

1

12
=

1

3
.

Then the x- and y-coordinates of the center of mass of QD are
1
3
π
4

=
4

3π
.

(5) Which one of the numbers ∫ π

0

esin
2 xdx and

3π

2

is larger? Justify your answer.

Solution Note that

esin
2 x = 1 + sin2 x+

sin4 x

2
+ · · · ≥ 1 + sin2 x.
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This inequality is strict on the interval (0, π). So we must have∫ π

0

esin
2 xdx >

∫ π

0

(1 + sin2 x)dx = π +

∫ π

0

sin2 xdx.

Yet sin2 x = 1−cos 2x
2

. So∫ π

0

sin2 xdx =

∫ π

0

1− cos 2x

2
dx =

π

2
− 1

4
sin 2x

∣∣∣π
0

=
π

2
.

Combining these two lines, we deduce that∫ π

0

esin
2 xdx > π +

π

2
=

3π

2
.

(6) Let f : R→ R be a periodic continuous function, of period T > 0, that is f(x+T ) =
f(x) for any x ∈ R. Prove that

lim
x→∞

1

x

∫ x

0

f (t) dt =
1

T

∫ T

0

f (t) dt.

Solution. For any x > 0, there exists a unique positive integer k > 0 and
0 ≤ ak < T so that

x = kT + ak.

Since x→∞, then k →∞. We have,

1

x

∫ x

0

f (t) dt =
1

kT + ak

∫ kT+ak

0

f (t) dt

=
1

kT + ak

(∫ kT

0

f (t) dt+

∫ kT+ak

kT

f (t) dt

)
.

Since f is periodic of period T , we know that∫ kT

0

f (t) dt = k

∫ T

0

f (t) dt∫ kT+ak

kT

f (t) dt =

∫ ak

0

f (t) dt.

Therefore, we get

1

x

∫ x

0

f (t) dt =
k

kT + ak

∫ T

0

f (t) dt+
1

kT + ak

∫ ak

0

f (t) dt.

Making k →∞ we obtain the result.

(7) Suppose (an)n≥1 is a decreasing sequence with positive terms such that

∞∑
n=1

an <∞.

Prove that:
(a) The sequence xn = (a1 + a2 + · · ·+ an)− nan is bounded and increasing.
(b) The sequence (nan)n≥1 converges to zero when n goes to infinite.

3



Solution. (a) The sequence xn is bounded because an > 0, so

xn ≤
∞∑
n=1

an <∞.

The sequence is increasing because

xn+1 − xn = n (an − an+1) > 0.

(b) Since the sequence (xn)n≥1 is bounded and increasing, we know that it has a
limit. Therefore, the limit

lim
n→∞

nan = lim
n→∞

(
(a1 + · · ·+ an) − xn

)
= lim

n→∞
(a1 + · · ·+ an)− lim

n→∞
xn

exists. Write L for this limit, and we shall show that L = 0.
Suppose L > 0. Then by comparison test,

∑
an and

∑
1
n

either simultaneously

converge or simultaneously diverge. Yet we know
∑

1
n

diverges and
∑
an converges.

This is a contradiction.
In conclusion, L = 0. 2

(8) Find all absolute minimum points for the function f (x, y) = x4 + y4 − 4xy, where
x, y ∈ R.

Solution. To find critical points we solve

∂f

∂x
= 0

∂f

∂y
= 0.

It follows that

4x3 − 4y = 0

4y3 − 4x = 0.

From here we get
x3 = y and x = y3.

Then we obtain that x9 = x, which has solutions x = −1, x = 0 and x = 1. The
points A (−1,−1), O (0, 0) and B (1, 1) are critical points for f . Since f (0, 0) = 0 and
f (−1,−1) = f (1, 1) = −2, only A (−1,−1) and B (1, 1) can be absolute minimum.
This is indeed the case, because

f(x, y) + 2 = x4 + y4 − 4xy + 2

= (x2 − y2)2 + 2x2y2 − 4xy + 2

= (x2 − y2)2 + 2(xy − 1)2 ≥ 0.

Consequently, f (x, y) ≥ −2, for all x, y ∈ R. This proves that A and B are absolute
minimum points.

(9) Compute ∫∫∫
S

dxdydz

(1 + x+ y + z)2

where S = {x ≥ 0, y ≥ 0, z ≥ 0, x+ y + z ≤ 1}.
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Solution. The solid S is the interior of the tetrahedron defined by x = 0, y =
0, z = 0 and x + y + z = 1. This can be written as 0 ≤ z ≤ 1 − (x+ y), where
(x, y) ∈ D, for D = {x ≥ 0, y ≥ 0, x+ y ≤ 1}. Hence∫∫∫

S

dxdydz

(1 + x+ y + z)2
=

∫∫
D

(∫ 1−(x+y)

0

dz

(1 + x+ y + z)2

)
dxdy

=

∫∫
D

(
− 1

1 + x+ y + z

) ∣∣∣∣1−(x+y)
0

dxdy

=

∫∫
D

(
1

1 + x+ y
− 1

2

)
dxdy

=

∫ 1

0

∫ 1−x

0

(
1

1 + x+ y
− 1

2

)
dydx

=

∫ 1

0

(
ln (1 + x+ y)− 1

2
y

) ∣∣∣∣1−x
0

dx

=

∫ 1

0

(
ln 2− ln (1 + x)− 1

2
(1− x)

)
dx

=

(
(ln 2)x− (1 + x) ln (1 + x) +

1

2
x+

1

4
x2
) ∣∣∣∣1

0

= − ln 2 +
3

4
.
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