SOLUTIONS TO 2019 STUART SIDNEY CALCULUS COMPETITION
Tuesday 26 March, 2018, 6:30-8:00 p.m.

(1) Let f(z) be a function that is odd and differentiable on (—oo, +00).
(a) Prove that its derivative f’(z) is an even function.
(b) Is the converse statement true?

Solution. (a) Since f(z) is an odd function, f(z) = —f(—x). Taking derivative
of this equality on both sides with respect to z, we get

fi(a) = =(f(=2)) = =(=f'(=x)) = f'(-2).
Note that the second equality uses the chain rule.
(b) The converse statement is not true, as an odd function requires that f(0) =
0, yet only knowing f’(z) is an even function will not give that information. For
example, f(x) =z + 1 is not an odd function, yet f'(z) =1 is an even function.

(2) Recall the equality from geometric series:

N =l+a+a>+2°+---, for|z| <1
—x
(a) Compute the limit of the power series
1-2+(2-3)z+ (3-4)2° + (4-5)2* + (5-6)2* + - -- lz| < 1.

as a rational function in x;
(b) Compute
1_ 1'2+2-3_3-4+4-5_‘”
2 22 23 24
Solution. Starting with the given geometric series, we take the derivatives with
respect to x (this is okay as the infinite sum is absolutely convergent):

1
———— =1+2z+32° +42° + - -
(1—x)
The right hand side is absolutely convergent again when |z| < 1 by the ratio test for
example. Taking the derivatives again, we get

ﬁ:2+(2-3):1:+(3-4)$2+(4-5)x3+---
So th i 2
o the answer to (a) is s
(b) Evaluating the above equality at z = —%, we get
2, 23 .34 4.5
(1+1)? 2 T2 s
Dividing both sides by —2 and add 1, one get
B 1 :1_1~2+2-3_3~4+4~5_
(1+ 1) 2 o2 8 ot

2319
The answer to (b) is the left hand side above, namely 1 — ™= o
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(3) Construct one polynomial f(x) with real coefficients and with all of the following
properties:
(a) f(z) is an even function, in other words f(x) = f(—x);
(b) 7(2) = f(~2) =0,
(¢) f(z) >0 when —2 <z < 2, and
(d) the maximum of f(z) is achieved at x =1 and x = —1.
Justify your answer.

Solution. We start with a function g(z) that achieves maximum at x = +1 and

minimal at z = 0; for this, one may take g(x) such that ¢’(z) has zero at = = £1,0,
.1'2 x

e.g. ¢ (r) = x — x3. Integrating, we may take g(z) = % — f. To modify it so that

2
it satisfies conditions (b) and (c), we take

ot

= —_— 2 = —-—— —

f) =g(@) -~ 9@ =2 -~

(4) Consider the first quadrant quarter unit disk
QD:{(%@/) | >0, y>0, x2+y2§1}_

Assuming uniform density, find the coordinates of the center of mass of @D. (Hint:
the equality sin 3z = 3sinz — 4sin® x might be helpful.)

Solution. We compute the integral

1 . w/2
/ /1 — 22de T2 / sin ¢ cos t(cos tdt)
0 0

w/2
= / sint — sin® tdt
0

w/2 1
= / —(sint + sin 3t)dt
o 4
B 1 ; /2 1 3¢ /2
= haadd 15 08 3t|
1 1 1
= 04+--04+-—===
1TV TR T3
Then the x- and y-coordinates of the center of mass of QD are
1
s_ 4
T 3T

(5) Which one of the numbers

T 3
/ STy and or
0 2

is larger? Justify your answer.

Solution Note that

sin®

e — 1 4 sin’x + +oo- > 1+sin’.
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This inequality is strict on the interval (0, 7). So we must have

/ Ty > / (1+sin’z)dz =7 +/ sin? zdx.
0 0 0

Yet sin? g = 1=¢cos2z 0052"’“" . So

i 1 — 2 1
/ sin? xdx —/ ﬂdm _ T —sin 2%
0 0 2 2 4

Combining these two lines, we deduce that

T 3
/ esm%dw>7r+z:—7r.
; 2~ 2

Do

0

Let f: R — R be a periodic continuous function, of period 7" > 0, that is f(z+7T) =
f(z) for any x € R. Prove that

hm1 f(t :—/f
=00 T fo

Solution. For any x > 0, there exists a unique positive integer £ > 0 and
0 < a, < T so that
Since x — 0o, then k — oo. We have,

1 T 1 kT+ay
_/O fydt = /0 f(t)dt

z kT + ay,
1 kT kT+ay
_ £)dt + fdt) .
k“ak(o rwac [ )

Since f is periodic of period T, we know that

Y = k;/Tf(t)dt

kT+ay ag
/ f@)ydt = / f(t)dt
kT 0
Therefore, we get

1 T k’ T 1 ag
5/0 f(t)dt:kT+ak/0 f(t)dt+kT+ak/0 (1) dt

Making k — oo we obtain the result.

Suppose (an,),~, is a decreasing sequence with positive terms such that

o
Z a, < 00.
n=1
Prove that:
(a) The sequence x,, = (ay + az + -+ + a,) — na, is bounded and increasing.
(b) The sequence (na,),~, converges to zero when n goes to infinite.
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Solution. (a) The sequence x,, is bounded because a,, > 0, so

o0
T, < Zan < 0Q.
n=1

The sequence is increasing because
Tpt1 — Ty =1 (ay — apyq) > 0.
(b) Since the sequence (x,),>1 is bounded and increasing, we know that it has a
limit. Therefore, the limit

lim na, = lim <(a1—|—---—|—an) — xn) = lim (ay + -+ a,) — lim z,
n—oo n—oo n—oo n—0o0

exists. Write L for this limit, and we shall show that L = 0.

Suppose L > 0. Then by comparison test, > a, and Z% either simultaneously
converge or simultaneously diverge. Yet we know % diverges and »_ a,, converges.
This is a contradiction.

In conclusion, L = 0. O

Find all absolute minimum points for the function f (z,y) = z* + y* — 4xy, where
z,y € R.
Solution. To find critical points we solve

of
g—$ = 0
8_5 )
It follows that
4a —4y = 0
4o — Az 0.

From here we get

2=y and z =17

Then we obtain that 2° = z, which has solutions x = —1, x = 0 and « = 1. The
points A (—1,—1), O (0,0) and B (1, 1) are critical points for f. Since f (0,0) = 0 and
f(=1,-1) = f(1,1) = =2, only A(—1,—1) and B (1,1) can be absolute minimum.
This is indeed the case, because
fle,y)+2 = o' +y' —day +2

= (2% —yH)? + 227 — day + 2

= (2 —y)? +2(xy —1)*>0.
Consequently, f (z,y) > —2, for all x,y € R. This proves that A and B are absolute

minimum points.
/ / / dxdydz
Y (I+a+y+2)?

where S ={z >0,y >0,z >0,z +y+ 2 < 1}.
4

Compute




Solution. The solid S is the interior of the tetrahedron defined by x = 0,y =
0 z = 0and x +y+ z = 1. This can be written as 0 < z < 1 — (x + y), where
(x,y) € D, for D={x >0,y >0,z +y < 1}. Hence

/// daxdydz // / (@+y) dz
5 = 5 | dedy
1+z+y+=2) 1+z+y+=2)
1—(z+y)
= - dxd
//( 1+x+y+z) 0 vy
D
1 1
= —— — — ) dxd
//(1+x—|—y 2) R
1
L (et
o Jo Itoty 2

1(ln(1+x+y)—%y)

11—z

dx

0

S— S—

1(1112—111(1—1—37)—%(1—:5)) da

1 1

- ((1n2)x—(1+x)ln(1+x)+%x+1$2)

0

3
= —In2+-=-.
n—l—4



