SOLUTIONS TO 2019 STUART SIDNEY CALCULUS COMPETITION

Tuesday 26 March, 2018, 6:30-8:00 p.m.
(1) Let $f(x)$ be a function that is odd and differentiable on $(-\infty,+\infty)$.
(a) Prove that its derivative $f^{\prime}(x)$ is an even function.
(b) Is the converse statement true?

Solution. (a) Since $f(x)$ is an odd function, $f(x)=-f(-x)$. Taking derivative of this equality on both sides with respect to x, we get

$$
f^{\prime}(x)=-(f(-x))^{\prime}=-\left(-f^{\prime}(-x)\right)=f^{\prime}(-x) .
$$

Note that the second equality uses the chain rule.
(b) The converse statement is not true, as an odd function requires that $f(0)=$ 0 , yet only knowing $f^{\prime}(x)$ is an even function will not give that information. For example, $f(x)=x+1$ is not an odd function, yet $f^{\prime}(x)=1$ is an even function.
(2) Recall the equality from geometric series:

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots, \quad \text { for }|x|<1
$$

(a) Compute the limit of the power series

$$
1 \cdot 2+(2 \cdot 3) x+(3 \cdot 4) x^{2}+(4 \cdot 5) x^{3}+(5 \cdot 6) x^{4}+\cdots \quad|x|<1
$$

as a rational function in x;
(b) Compute

$$
1-\frac{1 \cdot 2}{2}+\frac{2 \cdot 3}{2^{2}}-\frac{3 \cdot 4}{2^{3}}+\frac{4 \cdot 5}{2^{4}}-\cdots
$$

Solution. Starting with the given geometric series, we take the derivatives with respect to x (this is okay as the infinite sum is absolutely convergent):

$$
\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+\cdots
$$

The right hand side is absolutely convergent again when $|x|<1$ by the ratio test for example. Taking the derivatives again, we get

$$
\frac{2}{(1-x)^{3}}=2+(2 \cdot 3) x+(3 \cdot 4) x^{2}+(4 \cdot 5) x^{3}+\cdots
$$

So the answer to (a) is $\frac{2}{(1-x)^{3}}$.
(b) Evaluating the above equality at $x=-\frac{1}{2}$, we get

$$
\frac{2}{\left(1+\frac{1}{2}\right)^{3}}=1 \cdot 2-\frac{2 \cdot 3}{2}+\frac{3 \cdot 4}{2^{2}}-\frac{4 \cdot 5}{2^{3}}+\cdots
$$

Dividing both sides by -2 and add 1 , one get

$$
1-\frac{1}{\left(1+\frac{1}{2}\right)^{3}}=1-\frac{1 \cdot 2}{2}+\frac{2 \cdot 3}{2^{2}}-\frac{3 \cdot 4}{2^{3}}+\frac{4 \cdot 5}{2^{4}}-\cdots
$$

The answer to (b) is the left hand side above, namely $1-\frac{2^{3}}{3^{3}}=\frac{19}{27}$.
(3) Construct one polynomial $f(x)$ with real coefficients and with all of the following properties:
(a) $f(x)$ is an even function, in other words $f(x)=f(-x)$;
(b) $f(2)=f(-2)=0$,
(c) $f(x)>0$ when $-2<x<2$, and
(d) the maximum of $f(x)$ is achieved at $x=1$ and $x=-1$.

Justify your answer.
Solution. We start with a function $g(x)$ that achieves maximum at $x= \pm 1$ and minimal at $x=0$; for this, one may take $g(x)$ such that $g^{\prime}(x)$ has zero at $x= \pm 1,0$, e.g. $g^{\prime}(x)=x-x^{3}$. Integrating, we may take $g(x)=\frac{x^{2}}{2}-\frac{x^{4}}{4}$. To modify it so that it satisfies conditions (b) and (c), we take

$$
f(x)=g(x)-g(2)=\frac{x^{2}}{2}-\frac{x^{4}}{4}+2 .
$$

(4) Consider the first quadrant quarter unit disk

$$
Q D=\left\{(x, y) \mid x \geq 0, y \geq 0, x^{2}+y^{2} \leq 1\right\} .
$$

Assuming uniform density, find the coordinates of the center of mass of $Q D$. (Hint: the equality $\sin 3 x=3 \sin x-4 \sin ^{3} x$ might be helpful.)

Solution. We compute the integral

$$
\begin{aligned}
\int_{0}^{1} x \sqrt{1-x^{2}} d x & \stackrel{x=\sin t}{=} \int_{0}^{\pi / 2} \sin t \cos t(\cos t d t) \\
& =\int_{0}^{\pi / 2} \sin t-\sin ^{3} t d t \\
& =\int_{0}^{\pi / 2} \frac{1}{4}(\sin t+\sin 3 t) d t \\
& =-\left.\frac{1}{4} \cos t\right|_{0} ^{\pi / 2}-\left.\frac{1}{12} \cos 3 t\right|_{0} ^{\pi / 2} \\
& =-0+\frac{1}{4}-0+\frac{1}{12}=\frac{1}{3} .
\end{aligned}
$$

Then the x - and y-coordinates of the center of mass of $Q D$ are

$$
\frac{\frac{1}{3}}{\frac{\pi}{4}}=\frac{4}{3 \pi}
$$

(5) Which one of the numbers

$$
\int_{0}^{\pi} e^{\sin ^{2} x} d x \quad \text { and } \quad \frac{3 \pi}{2}
$$

is larger? Justify your answer.
Solution Note that

$$
e^{\sin ^{2} x}=1+\sin ^{2} x+\frac{\sin ^{4} x}{2}+\cdots \geq 1+\sin ^{2} x
$$

This inequality is strict on the interval $(0, \pi)$. So we must have

$$
\int_{0}^{\pi} e^{\sin ^{2} x} d x>\int_{0}^{\pi}\left(1+\sin ^{2} x\right) d x=\pi+\int_{0}^{\pi} \sin ^{2} x d x
$$

Yet $\sin ^{2} x=\frac{1-\cos 2 x}{2}$. So

$$
\int_{0}^{\pi} \sin ^{2} x d x=\int_{0}^{\pi} \frac{1-\cos 2 x}{2} d x=\frac{\pi}{2}-\left.\frac{1}{4} \sin 2 x\right|_{0} ^{\pi}=\frac{\pi}{2}
$$

Combining these two lines, we deduce that

$$
\int_{0}^{\pi} e^{\sin ^{2} x} d x>\pi+\frac{\pi}{2}=\frac{3 \pi}{2}
$$

(6) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a periodic continuous function, of period $T>0$, that is $f(x+T)=$ $f(x)$ for any $x \in \mathbb{R}$. Prove that

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \int_{0}^{x} f(t) d t=\frac{1}{T} \int_{0}^{T} f(t) d t
$$

Solution. For any $x>0$, there exists a unique positive integer $k>0$ and $0 \leq a_{k}<T$ so that

$$
x=k T+a_{k}
$$

Since $x \rightarrow \infty$, then $k \rightarrow \infty$. We have,

$$
\begin{aligned}
\frac{1}{x} \int_{0}^{x} f(t) d t & =\frac{1}{k T+a_{k}} \int_{0}^{k T+a_{k}} f(t) d t \\
& =\frac{1}{k T+a_{k}}\left(\int_{0}^{k T} f(t) d t+\int_{k T}^{k T+a_{k}} f(t) d t\right)
\end{aligned}
$$

Since f is periodic of period T, we know that

$$
\begin{aligned}
\int_{0}^{k T} f(t) d t & =k \int_{0}^{T} f(t) d t \\
\int_{k T}^{k T+a_{k}} f(t) d t & =\int_{0}^{a_{k}} f(t) d t
\end{aligned}
$$

Therefore, we get

$$
\frac{1}{x} \int_{0}^{x} f(t) d t=\frac{k}{k T+a_{k}} \int_{0}^{T} f(t) d t+\frac{1}{k T+a_{k}} \int_{0}^{a_{k}} f(t) d t
$$

Making $k \rightarrow \infty$ we obtain the result.
(7) Suppose $\left(a_{n}\right)_{n \geq 1}$ is a decreasing sequence with positive terms such that

$$
\sum_{n=1}^{\infty} a_{n}<\infty
$$

Prove that:
(a) The sequence $x_{n}=\left(a_{1}+a_{2}+\cdots+a_{n}\right)-n a_{n}$ is bounded and increasing.
(b) The sequence $\left(n a_{n}\right)_{n \geq 1}$ converges to zero when n goes to infinite.

Solution. (a) The sequence x_{n} is bounded because $a_{n}>0$, so

$$
x_{n} \leq \sum_{n=1}^{\infty} a_{n}<\infty
$$

The sequence is increasing because

$$
x_{n+1}-x_{n}=n\left(a_{n}-a_{n+1}\right)>0 .
$$

(b) Since the sequence $\left(x_{n}\right)_{n \geq 1}$ is bounded and increasing, we know that it has a limit. Therefore, the limit

$$
\lim _{n \rightarrow \infty} n a_{n}=\lim _{n \rightarrow \infty}\left(\left(a_{1}+\cdots+a_{n}\right)-x_{n}\right)=\lim _{n \rightarrow \infty}\left(a_{1}+\cdots+a_{n}\right)-\lim _{n \rightarrow \infty} x_{n}
$$

exists. Write L for this limit, and we shall show that $L=0$.
Suppose $L>0$. Then by comparison test, $\sum a_{n}$ and $\sum \frac{1}{n}$ either simultaneously converge or simultaneously diverge. Yet we know $\sum \frac{1}{n}$ diverges and $\sum a_{n}$ converges. This is a contradiction.

In conclusion, $L=0$.
(8) Find all absolute minimum points for the function $f(x, y)=x^{4}+y^{4}-4 x y$, where $x, y \in \mathbb{R}$.

Solution. To find critical points we solve

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=0 \\
& \frac{\partial f}{\partial y}=0
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& 4 x^{3}-4 y=0 \\
& 4 y^{3}-4 x=0
\end{aligned}
$$

From here we get

$$
x^{3}=y \quad \text { and } x=y^{3} .
$$

Then we obtain that $x^{9}=x$, which has solutions $x=-1, x=0$ and $x=1$. The points $A(-1,-1), O(0,0)$ and $B(1,1)$ are critical points for f. Since $f(0,0)=0$ and $f(-1,-1)=f(1,1)=-2$, only $A(-1,-1)$ and $B(1,1)$ can be absolute minimum. This is indeed the case, because

$$
\begin{aligned}
f(x, y)+2 & =x^{4}+y^{4}-4 x y+2 \\
& =\left(x^{2}-y^{2}\right)^{2}+2 x^{2} y^{2}-4 x y+2 \\
& =\left(x^{2}-y^{2}\right)^{2}+2(x y-1)^{2} \geq 0
\end{aligned}
$$

Consequently, $f(x, y) \geq-2$, for all $x, y \in \mathbb{R}$. This proves that A and B are absolute minimum points.
(9) Compute

$$
\iiint_{S} \frac{d x d y d z}{(1+x+y+z)^{2}}
$$

where $S=\{x \geq 0, y \geq 0, z \geq 0, x+y+z \leq 1\}$.

Solution. The solid S is the interior of the tetrahedron defined by $x=0, y=$ $0, z=0$ and $x+y+z=1$. This can be written as $0 \leq z \leq 1-(x+y)$, where $(x, y) \in D$, for $D=\{x \geq 0, y \geq 0, x+y \leq 1\}$. Hence

$$
\begin{aligned}
\iiint_{S} \frac{d x d y d z}{(1+x+y+z)^{2}} & =\iint_{D}\left(\int_{0}^{1-(x+y)} \frac{d z}{(1+x+y+z)^{2}}\right) d x d y \\
& =\left.\iint_{D}\left(-\frac{1}{1+x+y+z}\right)\right|_{0} ^{1-(x+y)} d x d y \\
& =\iint_{D}\left(\frac{1}{1+x+y}-\frac{1}{2}\right) d x d y \\
& =\int_{0}^{1} \int_{0}^{1-x}\left(\frac{1}{1+x+y}-\frac{1}{2}\right) d y d x \\
& =\left.\int_{0}^{1}\left(\ln (1+x+y)-\frac{1}{2} y\right)\right|_{0} ^{1-x} d x \\
& =\int_{0}^{1}\left(\ln 2-\ln (1+x)-\frac{1}{2}(1-x)\right) d x \\
& =\left.\left((\ln 2) x-(1+x) \ln (1+x)+\frac{1}{2} x+\frac{1}{4} x^{2}\right)\right|_{0} ^{1} \\
& =-\ln 2+\frac{3}{4} .
\end{aligned}
$$

